3,131 research outputs found

    Design and test results of the AMS RICH detector

    Get PDF
    The AMS-02 detector will operate for at least 3 years on the International Space Station, measuring cosmic ray spectra at about 400 km above sea level over a wide range of geomagnetic latitude. The proximity focusing ring imaging \v{C}erenkov counter of AMS-02 will measure the particle velocity β\beta with ≈0.1\approx 0.1% uncertainty, making possible to discriminate Beryllium isotopes up to about 15 GeV/nucl. In addition its charge measurement will allow to study the elemental composition of cosmic rays up to Iron. A prototype of the RICH detector was tested with cosmic rays and on a ion beam accelerated by SPS, at CERN (October 2002).The AMS-02 detector will operate for at least 3 years on the International Space Station, measuring cosmic ray spectra at about 400 km above sea level over a wide range of geomagnetic latitude. The proximity focusing ring imaging \v{C}erenkov counter of AMS-02 will measure the particle velocity β\beta with ≈0.1\approx 0.1% uncertainty, making possible to discriminate Beryllium isotopes up to about 15 GeV/nucl. In addition its charge measurement will allow to study the elemental composition of cosmic rays up to Iron. A prototype of the RICH detector was tested with cosmic rays and on a ion beam accelerated by SPS, at CERN (October 2002).The AMS-02 detector will operate for at least 3 years on the International Space Station, measuring cosmic ray spectra at about 400 km above sea level over a wide range of geomagnetic latitude. The proximity focusing ring imaging \v{C}erenkov counter of AMS-02 will measure the particle velocity β\beta with ≈0.1\approx 0.1% uncertainty, making possible to discriminate Beryllium isotopes up to about 15 GeV/nucl. In addition its charge measurement will allow to study the elemental composition of cosmic rays up to Iron. A prototype of the RICH detector was tested with cosmic rays and on a ion beam accelerated by SPS, at CERN (October 2002).The AMS-02 detector will operate for at least 3 years on the International Space Station, measuring cosmic ray spectra at about 400 km above sea level over a wide range of geomagnetic latitude. The proximity focusing ring imaging \v{C}erenkov counter of AMS-02 will measure the particle velocity β\beta with ≈0.1\approx 0.1% uncertainty, making possible to discriminate Beryllium isotopes up to about 15 GeV/nucl. In addition its charge measurement will allow to study the elemental composition of cosmic rays up to Iron. A prototype of the RICH detector was tested with cosmic rays and on a ion beam accelerated by SPS, at CERN (October 2002).The AMS-02 detector will operate for at least 3 years on the International Space Station, measuring cosmic ray spectra at about 400 km above sea level over a wide range of geomagnetic latitude. The proximity focusing ring imaging \v{C}erenkov counter of AMS-02 will measure the particle velocity β\beta with ≈0.1\approx 0.1% uncertainty, making possible to discriminate Beryllium isotopes up to about 15 GeV/nucl. In addition its charge measurement will allow to study the elemental composition of cosmic rays up to Iron. A prototype of the RICH detector was tested with cosmic rays and on a ion beam accelerated by SPS, at CERN (October 2002)

    Estimating the selection efficiency

    Full text link
    The measurement of the efficiency of an event selection is always an important part of the analysis of experimental data. The statistical techniques which are needed to determine the efficiency and its uncertainty are reviewed. Frequentist and Bayesian approaches are illustrated, and the problem of choosing a meaningful prior is explicitly addressed. Several practical use cases are considered, from the problem of combining different samples to complex situations in which non-unit weights or non-independent selections have been used. The Bayesian approach allows to find analytical expressions which solve even the most complicate problems, which make use of the family of Beta distributions, the conjugate priors for the binomial sampling

    Esperimento AMS: problemi teorici e sperimentali nella ricerca di antimateria in raggi cosmici

    Get PDF
    In this thesis are reported the design and the tests that have been done on the prototype counters of the Time of Flight (TOF) system of the AMS (Alpha Magnetic Spectrometer) experiment. The behaviour of the Hamamatsu R5900 under vacuum test is also shown. (text is in italian

    Augmented Collective Digital Twins for Self-Organising Cyber-Physical Systems

    Get PDF
    Context. Self-organising and collective computing approaches are increasingly applied to large-scale cyber-physical systems (CPS), enabling them to adapt and cooperate in dynamic environments. Also, in CPS engineering, digital twins are often leveraged to provide synchronised logical counterparts of physical entities, whereas in sensor networks the different-but-related concept of virtual device is used e.g. to abstract groups of sensors. Vision. We envision the design concept of 'augmented collective digital twin' that captures digital twins at a collective level extended with purely virtual devices. We argue that this concept can foster the engineering of self-organising CPS by providing a holistic, declarative, and integrated system view. Method. From a review and proposed taxonomy of logical devices comprehending both digital twins and virtual devices, we reinterpret a meta-model for self-organising CPSs and discuss how it can support augmented collective digital twins. We illustrate the approach in a crowd-aware navigation scenario, where virtual devices are opportunistically integrated into the system to enhance spatial coverage, improving navigation capabilities. Conclusion. By integrating physical and virtual devices, the novel notion of augmented collective digital twin paves the way to self-improving system functionality and intelligent use of resources in self-organising CPSs. Conclusion. By integrating physical and virtual devices, the novel notion of augmented collective digital twin paves the way to self-improving system functionality and intelligent use of resources in self-organising CPSs

    The Time of Flight System of the AMS-02 Space Experiment

    Full text link
    The Time-of-Flight (TOF) system of the AMS detector gives the fast trigger to the read out electronics and measures velocity, direction and charge of the crossing particles. The new version of the detector (called AMS-02) will be installed on the International Space Station on March 2004. The fringing field of the AMS-02 superconducting magnet is 1.0á2.51.0\div2.5 kG where the photomultiplers (PM) are installed. In order to be able to operate with this residual field, a new type of PM was chosen and the mechanical design was constrained by requiring to minimize the angle between the magnetic field vector and the PM axis. Due to strong field and to the curved light guides, the time resolution will be 150á180150\div180 ps, while the new electronics will allow for a better charge measurement.Comment: 5 pages, 4 figures. Proc. of 7th Int. Conf. on Adv. Tech. and Part. Phys., 15-19 October 2001,Como (Italy

    Space-Fluid Adaptive Sampling: A Field-Based, Self-organising Approach

    Get PDF
    A recurrent task in coordinated systems is managing (estimating, predicting, or controlling) signals that vary in space, such as distributed sensed data or computation outcomes. Especially in large-scale settings, the problem can be addressed through decentralised and situated computing systems: nodes can locally sense, process, and act upon signals, and coordinate with neighbours to implement collective strategies. Accordingly, in this work we devise distributed coordination strategies for the estimation of a spatial phenomenon through collaborative adaptive sampling. Our design is based on the idea of dynamically partitioning space into regions that compete and grow/shrink to provide accurate aggregate sampling. Such regions hence define a sort of virtualised space that is “fluid”, since its structure adapts in response to pressure forces exerted by the underlying phenomenon. We provide an adaptive sampling algorithm in the field-based coordination framework. Finally, we verify by simulation that the proposed algorithm effectively carries out a spatially adaptive sampling

    Ultrasound as first line step in anaemia diagnostics

    Get PDF
    This review covers the role of ultrasonography as an essential non-invasive diagnostic approach when facing patients with anaemia, a common clinical problem. Abdomen ultrasound is well recognised as a first-line examination in the setting of blood loss, both acute and chronic. Less is clear about the additional opportunities, given by ultrasound in anaemia, due to the many other possible causes. Here we provide information on the utility of ultrasound in different contexts and a practical guide for clinicians facing anaemic patients
    • …
    corecore